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SUMMARY 

The present paper describes a numerical model for predicting the non-linear wave forces exerted on large 
coastal or offshore structures. The interaction is calculated from a known initial condition corresponding 
to still water in the immediate vicinity of the structure. A prescribed incident wave of large amplitude 
approaches the structure. The boundary constraints on the free surface are considered in the fully non-linear 
versions. Not far away from the structure, an artificial open boundary is considered with a suitable description 
of the radiation boundary condition for an incident wave propagating inwards, and in addition the scattering 
wave being absorbed. The finite difference method and time stepping are adopted for numerical calculation in 
the present model. For illustration the wave forces on a surface-piercing vertical cylinder subjected to two 
different incident wave trains were evaluated. Reasonably good agreement could be obtained between the 
numerical results and the analytical solution given by Isaacson.' 
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INTRODUCTION 

Based on linearized theory, the wave diffraction problem has been studied extensively. In this 
case the non-linear boundary conditions over the free surface are linearized, and in addition 
these constraints are applied approximately on the still water level in accordance with the small 
amplitude assumption, together with other boundary conditions over rigid walls, as well as the 
Sommerfeld radiation condition at infinity; the velocity potential of the scattered wave is solved 
from the governing equation. Within the framework of linear problems, the physical model is 
well posed, and the governing equation can be solved readily by the separation of variables 
method. The solution domain bounded by a time-dependent free surface is approximated by a 
fixed spatial domain. The difficulties encountered in the solution process are thus reduced to a 
great extent. 

For the non-linear wave diffraction problem, the methods which have been applied successfully 
in the linear case are no longer available. The difficulties are primarily associated with the 
non-linear boundary constraints on the free surface, wherein its position varies with time, and 
is unknown a priori. These conditions cannot be written so as to be satisfied approximately on 
the still water level because of the steep wave nature. In addition, the variables associated with 
the total wave must be considered instead of those of the diffraction wave; another difficulty 
concerning a suitable description of the radiation condition is then set up. In view of these facts, 
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a realistic computational model for non-linear wave diffraction is of great importance. Moreover, 
because of the non-linearity, the separation of variables method is invalid, and also the free 
surface cannot be approximated by the still water level, so that the time-variant boundary must 
be treated specially. The difficulties associated with the non-linear problem are thus enhanced. 

A method used to calculate the non-linear diffraction is applicable based on Stokes 
e ~ p a n s i o n , ~ - ~  in which the total wave potential is composed of a finite series of velocity potentials 
of different orders in the sense of a small parameter expansion. The sequential calculation of 
different order potentials is similar to that of the linear problem. It cannot therefore have 
widespread applications, owing to its relatively restricted conditions. 

An alternative approach to the non-linear diffraction problem, in which the total velocity 
potential is taken as the variable of consideration, has been adopted by Isaacson.' The wave 
diffraction is treated as a transient problem, with a given wave form approaching a structure, 
within the immediate vicinity of which an initial condition corresponding to still water is 
prescribed. Over a control surface lying a sufficient distance away, the boundary condition is 
given as a known incident wave potential. Calculations can be advanced until the scattered wave 
approaches this control surface. 

The objective of the present paper is to develop a new computational model which would be 
capable of analysing numerically the non-linear diffraction in the general case over a sufficient 
duration to describe the wave evolution with time. In this case, the key to success lies in the 
treatment of boundary constraints over the free surface and in the elimination of reflection or 
wrap-around from the outer boundary of the spatially discrete grids. In view of reducing the 
requirement on computer storage and computing cost, the location of the outer boundary should 
not be far away from the object. For this, a suitable radiation boundary condition instead of 
that of Isaacson's model is prescribed on an artificial open boundary lying a moderate distance 
from the structure. Over the open boundary, the incident wave is allowed to propagate through; 
also, the scattered wave can propagate outwards, and no wave reflection results there. Improper 
treatment of the open boundary condition would result in spurious reflections that would make 
the computation distorted from the real physical phenomenon. Provided that the open boundary 
is a moderate distance from the structure, the scattered wave which results from the interaction 
of the approaching wave with the structure would be expected to retain the character of plane 
parallelism in the vicinity of a spatial-temporal node M on this boundary. Then, the physical 
variable 4s (say, velocity potential, or wave height) of the scattered wave is propagating outwards 
with celerity C in the direction of 1. Suppose that the open boundary lies a sufficient distance 
away, so that the body can be imagined as a point relative to the domain bounded by the open 
boundary, then the direction of I should coincide with the radiated line from the centre. In order 
to reduce the computational effort, it is preferable to have the open boundary lying a moderate 
distance away, where the scattered wave can be considered plane parallel within a grid spacing, 
but the direction of I becomes unknown. Fortunately, in view of the nature of plane parallelism, 
the propagating direction 1 can be formulated with the variables of the wave itself. Cheng5 used 
a similar thought in the problem of wave radiation in the absence of an incident wave. For the 
problem of wave diffraction, the variables of the total wave are considered in the present model. 
The variables of the scattered wave is substituted by &=4-4,, where and 4, denote 
the variables corresponding to the total wave and incident wave, respectively. 

In the present model, the diffraction generated by sinusoidal and solitary waves approaching 
and propagating over a surface-piercing vertical cylinder is described. The governing equation, 
incorporating the boundary conditions, is solved by means of a finite difference method, and a 
time-stepping procedure is also used to obtain the wave evolution with time. Computed results 
of wave force corresponding to different locations of the open boundary are presented. In 
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particular, preliminary comparisons are made between the numerical results and the closed-form 
solution given by Isaacson, and these are quite favourable. They show that the present model 
is capable of predicting non-linear wave forces, and that the treatment of the open boundary 
condition is effective in absorbing the inward reflection of the scattered waves. 
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FORMULATION O F  THE PROBLEM 

The solution domain of interest (Figure 1) is bounded by an inner surface S,, the sea-bed S,,, 
the free surface S,  and an open boundary S,, where S, identifies the immersed surface of the 
cylinder with radius R , ,  and S, a cylindrical surface with radius R,. Let r ,  8, z form a cylindrical 
co-ordinate system, with z measured upwards from the still water level. The fluid is assumed 
inviscid and incompressible, and the flow is irrotational. The fluid motion can therefore be 
described by a velocity potential 4, which satisfies the Laplace equation 

and is subject to the following boundary conditions: 

and the dynamic and kinetic conditions on S,: 

dv] w a v ]  1 a4 -+--+------=O, on S, (z=v]), 
dt dr dr r2  do a8 dz 

3 at +' 2 { ( g), + ( :$), + ( g),) + = 0, on s, ( z  = v ] ) ,  

(3) 

(4) 

together with a suitable radiation boundary condition posed on the open boundary, which will 
be discussed in detail later. In these formulae, v]  denotes the wave elevation, d the water depth, 
Fr denotes the Froude number U/(yL)1'2 and y is the gravity acceleration. U and L are the 
characteristic velocity and length, respectively. 

Figure 1 
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Initial conditions are chosen to correspond to still water in the vicinity of the structure and 
a prescribed steep incident wave form approaching inwards. 

OPEN BOUNDARY CONDITION 

An artificial open boundary is considered lying a moderate distance away from the structure 
(Figure 2). The variable of the scattered wave 4, (say, velocity potential, or wave elevation) in 
the immediate vicinity of a spatial-temporal node M (r,, Om, z,, t )  over the open boundary 
should have the form 

or equivalently 

In physical terms, this implies that within the immediate vicinity of the node M the scattered 
wave can be approximated as a plane parallel wave, propagating outwards with the celerity C 
along the direction of 1, and the derivatives of K,, K, and C with respect to Y, and t are 
relatively small and thus can be ignored, so that from equations (5) and (6), the following 
equations are straightforwardly derived: 

or 

and 

Comparison of equations (5) and (6) shows that 

K ,  = cos (r, l), K ,  = cos (0, I), 

i.e. K ,  and KO can be considered as direction cosines of 1 with respect to r and 8, respectively. 
If the open boundary is not placed at a sufficient distance, 1 will in general not be parallel 

with r. The direction of I is, or the direction cosines K ,  and K ,  are, then unknown. However, 
provided that the open boundary lies a moderate distance from the body, where the scattered 
wave can be considered as a plane parallel wave within a computing grid, the direction of 1 can 

/' 
/ 

C 

Figure 2 
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then be evaluated from the variables of the wave itself. Differentiating partially the terms of the 
two sides of equation (6) with respect to r and 8 results in 

a4,lar = K ,  a+,/da (10) 

(1 1) a4,lR2 a0 = K,a4,/aa, 
where a = K,r + K,R28 - Ct. Squaring the terms of equations (10) and (1 I), and adding them 
together, gives the following expression pertaining to equation (9): 

(a4,lW2 = (d4,/ar)2 + (d4s/R2 
or 

d$,/da = f [(a4,/ar)2 + ( d 4 , / ~ ,  dd)2]1/2. 

K ,  = .(a4s/ar"a4,/ar)2 + (84,/R2 w21- 1/2,  

K ,  = C I ( ~ ~ , / R ,  ae)[(a4slar)2 + (a4,/~, do)'] - 'Iz. 

Substituting equation (13) into equations (10) and (1 l), we obtain 

With equations (14) and (15) being substituted into equations (3) and (4), we obtain 

where the coefficient CI is defined as 

From equation (14), K ,  should have the same sign as ad4,/dr, where K ,  =cos(r,I), and 
also since the scattered wave 4s corresponds to an outward travelling wave, it requires that 
the absolute value of angle between r and I be smaller than n/2, so that K ,  > 0; this implies 
that c( a4, /dr  > 0, so that equation (17) then holds true. 

Equation (16) can be applied as the radiation boundary condition on the open boundary, 
where C is the local celerity. Let 

4 s  = 4 - 4 1 3  (18) 
where 4 and 4I denote the variables corresponding to total wave and incident wave, respectively; 
we then have the solution condition in terms of the total wave over the open boundary. 

Let 4 denote the velocity potential and y the wave elevation, then the radiation conditions 
over the open boundary can be written as 

R2d8 R2d9 1 =09 
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and equation (19) can be rewritten simply in terms of velocity components as 

}=o. (21) 
(0 - UI)(U - 01) + a (4  - 41) + ac (u - UI)(U - 4 

at { J u u  - uJ2 + (0 - 24’1 Jccu - + (u - Ul)’l 

Much simpler alternatives for the terms in the braces in equations (19)-(21) can be adopted, but 
we prefer to take the outlined forms, in which the direction cosines of 1 remain explicitly in the 
equation. In practical problems, over the open boundary, lying a moderate distance from the 
structure, the direction cosines must be independent of the variable z ,  or at nodes of different 
heights waves will propagate along the same direction. 

Errors are not excluded in the numerical procedure; sometimes there will be divergence. As 
the direction cosines were kept in an explicit form in the equation, it should be possible to apply 
some smoothing process in calculating the direction cosines along the vertical axis, so as to 
improve stability of computation. 

CO-ORDINATE TRANSFORMATION 

The governing equation (1) in terms of the velocity potential d(r ,O , z , t )  is defined over a 
time-varying spatial domain, i.e. the flow field is bounded partly by the free surface, whose 
location is unknown a priori. In order to avoid the trouble arising from the time-dependence 
of the grid in space discretization, the following co-ordinate transformation is introduced: 

x = r ,  

y = 9 ,  

The transformed flow field becomes a time-invariant domain of solution, with the free surface 
mapped onto a plane 5 = 1. In the x, y, 5 co-ordinate system the primitive Laplace equation (1) 
is transformed into the following equation with variable coefficients: 

where 
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The corresponding boundary conditions (2a) and (2b), after transformation become 

and the corresponding boundary conditions (3), (4), (20) and (21) will keep the primitive forms, 
except that the variables r,  6, z should be substituted by x ,  y,  5, and also the involved velocity 
components u,u,w or &p/ra6 and d$/az must be evaluated in the new co-ordinate 
system as 

For the sake of simplicity, these boundary conditions are now rewritten in abbreviated 
formulae: 

=F1, on Sf(t = I), (29) 
2 
at 

- = F , ,  on S,(x = R2). (3 1) 
av 
at 

- = F,, on S,(x = R 2 ) .  (32) 
a4 
at 

This completes an outline of the theoretical basis of the non-linear wave diffraction problems 
concerned. 

NUMERICAL PROCEDURE 

In a numerical procedure for solving the initial-boundary value problem outlined, the transformed 
domain of computation is discretized into a finite number of cylindrical cells with grid spacings 
of Ax, Ay and A t  parallel to the x ,  y and t axes, respectively. The finite difference method is 
used. Whenever the velocity potential over the domain, the wave elevation q and the velocity 
components u, u and w are known at time t, the values of these variables at time t + At are 
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evaluated according to the following process: update the wave elevation and velocity potential 
over both the free surface S,  and the open boundary S, at time t + At; solve a finite difference 
equation iteratively to obtain the distribution of 4 over the entire domain; modify the wave 
elevation and 4 over S, + S,; re-iterate the solution of $ over the domain in accordance with 
the modified boundary values of 4 and y ~ .  Each step of the numerical procedure is outlined 
separately below. 

Updating the wave elevation and velocity potential over S ,  + S ,  

The free surface boundary conditions and radiation condition over S, are the only ones to 
involve the time variable. A time-stepping procedure is adopted so that the initial value problem 
can be posed at any instant in terms of known quantities relating to previous time steps. 
Derivatives with respect to time are approximated by forward differences. The difference 
approximations of equations (29)-(32) are 

yI(t + At)  = y ( t )  + A t F l ( t ) ,  

$ ( t  + At )  = $( t )  + AtF2( t ) ,  

y ( t  + At)  = q( t )  + AtF3( t ) ,  

$ ( t  + At)  = $ ( t )  + AtF,(t), 

on S,(t = l ) ,  

on S,(t = l), 

on S,(x = R 2 ) ,  
on S,(x = R 2 ) .  

(33) 

(34) 

(35) 

(36) 

Solving the difference approximation of the governing equation iteratively 
to obtain velocity potential over the domain 

Once the wave elevation relating to time t + At is known, the variable coefficients Ci  in 
equation (23) are evaluated, and the velocity potential $ over S,+S,  becomes known by 
equations (34) and (36), together with over S b  + S b t ,  given by equations (24) and (25). 
This completes all the necessary boundary conditions for solving equation (23) relating to time 
t + At. The terms involved in equation (23) are approximated by central difference forms: 

-=($. 84 , - ax I +  1 . ~ . k  $ i -  l . j . k ) / 2 A x ?  
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The difference approximation corresponding to equation (23) may be written as 

Bl 6 i -  l , j , k +  1 + B2 6 i . j , k +  1 + B 3  6i+ l , j , k +  1 + B 4 6 i -  1 . j . k  + B 5  6 i . j . k  + B 6 6 i +  1 . j . k  

+ B7 6 i -  1 , j . k -  1 + B 8 $ i . j . k -  1 + B9 6i+ 1 , j . k -  1 + B I O $ i , j -  l . k +  1 + Bl  1 6 i . j -  1 .k  

+ Bl 2 6 i . j -  1 , k  - 1 + Bl 3 6 i . j +  1 .k + 1 + B14 6 i . j +  1 ,k + B l  5 6 i . j  + 1 .k - 1 = O, (37) 
where the coefficients B, are functions of the Cns of the partial differential equation as well as 
Ax, Ay  and A t  only. 

The difference equation (37) is then solved at the new time step by an iterative scheme as 

(38) B 2 $W,+ i , , ,k+  1 )  1 + B 5 6 : y l k ' )  + BB6iylkl-.!1 = R(6'"', $(n+ ' I ) ,  

where the superscripts denote the step number of iteration. This iterative scheme is mono- 
directional implicit along the 5 axis. With the equation (38) written on all the nodes within 
the domain or on the boundary where the Neumann type boundary condition is prescribed, a 
set of algebraic equations is solved iteratively to obtain the velocity potential at time t + At over 
the domain. 

Modifying the wave height and velocity potential 

Once the velocity potential relating to time t + At over the domain is known, the velocity 
components u, u, w can then be calculated. An average process is applied to modify the wave 
elevation and velocity potential over S ,  + S,:  

At 
2 

~ ( t  + At)  = V(t)  + - [ F ,  ( t )  + F l  ( t  + A t ) ] ,  

At 
2 
At 
2 

~ ( t  + At)  = ~ ( t )  + - [F3( t )  + F3(t + A t ) ] ,  

4(t + A t )  = 6(t) + ~ [ F 4 ( t )  + F4(t + A t ) ] ,  

Recalculating velocity potential at t + At 

The procedure is similar to that of the second step, incorporating the modified wave elevation 
and velocity potential (39)-(42) over the boundary S ,  + S, .  

The above procedure of solution is iterated until the velocity potential within the domain 
converges to within a prescribed error bound. In practice, results of favourable accuracy have 
been obtained over two steps of iteration, which has been adopted previously by Lu6 to solve 
a non-linear wave problem in a finite flow field. 

WAVE FORCE 

At any node the pressure may be determined by the application of the unsteady Bernoulli equation 

p = - p  a t + 2 + y z .  
v 2  1 (43) 
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The wave load on the structure is of primary interest and it can be calculated by appropriate 
integration of the pressure. Thus the component of force along the direction of wave propagation 
is expressed as 

Equations (43) and (44) are written in the cylindrical co-ordinate system (r ,  0 ,z) .  Considering 
the co-ordinate transform, the wave force is rewritten as 

where d t  is an infinitesimal cylindrical area in the x, y ,  5 co-ordinate system. The 
non-dimensional form of wave force is then expressed as 

where the term d 4 / d t  is approximated by the central difference 

Within each grid the integration of (45) is implemented approximately by multiplying the grid 
area by the averaged value of pressures at four nodes of the grid. 

RESULTS A N D  ANALYSIS 

A computer program which incorporates the present model has been used to generate numerical 
results to verify the practical viability of this method. The program has been exemplified with 
two incident waves of steeper crest and small amplitude, respectively, interacting with a 
surface-piercing vertical cylinder. In the first case, a sinusoidal wave train of small amplitude is 
considered as the incident wave. The free surface elevation is expressed as 

L 

where H is the wave height, k is the wave number and c is the wave celerity. In addition, an 
intermediate wave profile precedent to the sinusoidal wave train is necessary, by which the 
prescribed incident wave can be connected smoothly with the still water level in,the vicinity of 
the structure at the initial stage. This intermediate wave profile could be selected as a portion 
of a wave group or the like. The numerical results are reproduced in Figure 3, where the solid 
line indicates the analytical solution of MacCamy and Fuchs,’ and the points marked by ‘A’ 
denote the numerical results by the present model. 

In the second example, the incident wave under consideration was a solitary wave form given 
by 

y~ = H sech2[ti(x, - c t ) ] ,  (47) 
where ti = (3H/4c13)’’2, x, = x + R ,  + 3.0/ti, together with water depth d = 0.5, wave elevation 
H = 0.05 and radius of cylinder R ,  = 1. Several results corresponding to different distances 
between the cylinder and the open boundary are generated to investigate numerically the effect 
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Figure 3. Wave force on a surface-piercing cylinder subjected to a incident sinusoidal wave train, with d/R, = 2, 
H i R ,  =0.1, ku=0.75, R,=2.5 

I 

Figure 4. Wave force on a surface-piercing cylinder subjected to an incident solitary wave, with d/R, = 0.5, R 2  = 3.0. 
H j d  = 0. I 

of relative domain size upon the wave forces exerted on the body. Comparisons of the results 
with the closed-form solution given by Isaacson' are presented in Figures 4-6. Taking advantage 
of symmetry, only one half of the cylinder has been considered. Along the x, y ,  5 co-ordinates, 
grids are equally spaced, with node numbers m, n and I specified, respectively. In computation, 
a grid size of m x n x I = 5 x 15 x 5 was selected. The broken line indicates the closed-form 
solution given by Isaacson,' the points marked by ' x '  denote the numerical results by the 
present model, and the points marked by '0' indicate the numerical results incorporated with 
a prescribed incident wave form condition over the open boundary all the time. The last results 
are given for the case of R ,  = 3 only. 

The program has been run on an STM-PC to generate available results without undue 
computer effort. 

Prior to the analysis of the results, let us note a problem of the model outlined. Usually, the 
radiation condition over the open boundary is expressed in terms of the scattered wave. In the 
present model the diffraction wave has been identified as the difference between the total wave 
and the incident wave. This would be true for the linear wave diffraction problem. However, in 
the non-linear case, the outward travelling scattered wave will impact with the subsequent 
incident wave. Theoretically, there will be energy exchange, and the subsequent incident wave 
approaching the open boundary will experience some modification. Let us denote the incident 
wave approaching the open boundary without energy exchange as the ideal incident wave, say 
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Figure 5. Wave force on a surface-piercing cylinder subjected to an incident solitary wave, with d / R ,  = 0.5, 
H l d  = 0.1, R ,  = 3.5 
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Figure 6 .  Wave force on a surface-piercing cylinder subjected to an incident solitary wave, with d / R ,  =0.5, 
H/d = 0.1, R ,  = 2.5 

4, ,  and the one with energy exchange as real incident wave, say 4;. Now, two expressions 
for the scattered wave can be written as 

4: = 4 - 4 2  

4 s  = 4 - 41. 
(48) 

(49) 
Because it  is difficult to prescribe &, we would rather use expression (49) in applications. 
Rewrite equation (49) as 

4 s  = (4  - 49 + (4; + 41) = 4: + 4 1 3  (50) 
where A 4 1  is the increment of the incident wave due to energy exchange before it approaches 
the open boundary. Obviously, the present model is correct, provided that is a small 
quantity relative to 4;. Now, we shall split the open boundary into two portions, the up wave 
portion ACB and the off wave portion ADB, and discuss the generation of A$l and its effect 
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upon these two portions. In part ACB, exterior to the open boundary, the incident wave has 
energy exchange with the scattered wave. Because the scattered wave there becomes very weak, 
the energy exchange will be small. In part ADB, interior to the open boundary, the incident 
wave impacts with the scattered wave and a much greater increment than that in the up wave 
portion is present. However, we cannot therefore conclude that the increment A41 in the off 
wave portion will have a more seriously effect upon the computed results than that in the up 
wave portion. Practically, equations (48) and (49) can be considered as representing the total 
wave decomposed into incident and scattered components. According to equation (49), both 
incident wave and scattered wave have increments A 4 , .  In the up wave portion, as the incident 
wave incorporating the increment A41 approaches the computing region, there will be effects on the 
wave force calculation at subsequent times. In the off wave portion, the incident wave with 
increment and the scattered wave are propagating out of the computing region, so that there will be 
no serious effects on the computing wave force at subsequent times. 

CONCLUSIONS 

To sum up, the present model has considered sufficiently the nature of non-linearity interior to 
the computing domain, whereas exterior to it, especially over the up wave portion, the non-linear 
energy exchange between incident wave and scattered wave has been ignored. Experimental 
results are expected to provide further the extent of validity of the present model. Ideally, a 
theoretical estimation of the increment A 4 ,  is preferable. 

It can obviously be seen that in the model where a prescribed incident wave of permanent 
form is given over the open boundary, the results computed in the later period are significantly 
distorted. Results evaluated by the present method agree quite well with the closed-form solution, 
and it serves to highlight the fact that the open boundary condition presented in this paper is 
capable of effectively absorbing the scattered wave so that it does not reflect inwards, and also 
enables the computation of the wave force run over a sufficient duration for the wave motion 
to become fully established in the vicinity of the body. 
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